Predicting Inactive Conformations of Protein Kinases Using Active Structures: Conformational Selection of Type-II Inhibitors

نویسندگان

  • Min Xu
  • Lu Yu
  • Bo Wan
  • Long Yu
  • Qiang Huang
چکیده

Protein kinases have been found to possess two characteristic conformations in their activation-loops: the active DFG-in conformation and the inactive DFG-out conformation. Recently, it has been very interesting to develop type-II inhibitors which target the DFG-out conformation and are more specific than the type-I inhibitors binding to the active DFG-in conformation. However, solving crystal structures of kinases with the DFG-out conformation remains a challenge, and this seriously hampers the application of the structure-based approaches in development of novel type-II inhibitors. To overcome this limitation, here we present a computational approach for predicting the DFG-out inactive conformation using the DFG-in active structures, and develop related conformational selection protocols for the uses of the predicted DFG-out models in the binding pose prediction and virtual screening of type-II ligands. With the DFG-out models, we predicted the binding poses for known type-II inhibitors, and the results were found in good agreement with the X-ray crystal structures. We also tested the abilities of the DFG-out models to recognize their specific type-II inhibitors by screening a database of small molecules. The AUC (area under curve) results indicated that the predicted DFG-out models were selective toward their specific type-II inhibitors. Therefore, the computational approach and protocols presented in this study are very promising for the structure-based design and screening of novel type-II kinase inhibitors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DFGmodel: Predicting Protein Kinase Structures in Inactive States for Structure-Based Discovery of Type-II Inhibitors

Protein kinases exist in equilibrium of active and inactive states, in which the aspartate-phenylalanine-glycine motif in the catalytic domain undergoes conformational changes that are required for function. Drugs targeting protein kinases typically bind the primary ATP-binding site of an active state (type-I inhibitors) or utilize an allosteric pocket adjacent to the ATP-binding site in the in...

متن کامل

Molecular dynamics simulations show that conformational selection governs the binding preferences of imatinib for several tyrosine kinases.

Tyrosine kinases transmit cellular signals through a complex mechanism, involving their phosphorylation and switching between inactive and active conformations. The cancer drug imatinib binds tightly to several homologous kinases, including Abl, but weakly to others, including Src. Imatinib specifically targets the inactive, so-called "DFG-out" conformation of Abl, which differs from the prefer...

متن کامل

The Conformational Plasticity of Protein Kinases

Protein kinases operate in a large number of distinct signaling pathways, where the tight regulation of their catalytic activity is crucial to the development and maintenance of eukaryotic organisms. The catalytic domains of different kinases adopt strikingly similar structures when they are active. By contrast, crystal structures of inactive kinases have revealed a remarkable plasticity in the...

متن کامل

Type-II kinase inhibitor docking, screening, and profiling using modified structures of active kinase states.

Type-II kinase inhibitors represent a class of chemicals that trap their target kinases in an inactive, so-called DFG-out state, occupying a hydrophobic pocket adjacent to the ATP binding site. These compounds are often more specific than those that target active DFG-in kinase conformations. Unfortunately, the discovery of novel type-II scaffolds presents a considerable challenge, partially bec...

متن کامل

Type II Inhibitors Targeting CDK2.

Kinases can switch between active and inactive conformations of the ATP/Mg(2+) binding motif DFG, which has been explored for the development of type I or type II inhibitors. However, factors modulating DFG conformations remain poorly understood. We chose CDK2 as a model system to study the DFG in-out transition on a target that was thought to have an inaccessible DFG-out conformation. We used ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011